当前位置: 查字典论文网 >> 用活性炭改善室内空气品质的机理

用活性炭改善室内空气品质的机理

格式:DOC 上传日期:2023-05-24 00:04:14
用活性炭改善室内空气品质的机理
时间:2023-05-24 00:04:14     小编:

简介: 活性炭吸附材料对室内气态污染物具有优秀的吸附性能,活性炭过滤器逐渐应用于民用建筑空调系统中。本文简要介绍了活性炭的发展历史、分类、结构、性质,以及活性炭吸附室内污染物的物理和化学作用机理;同时对活性炭所去除的污染物种类也作了简要概括。

关键字:活性炭 空气品质 物理吸附 化学吸附

1 室内空气品质

随着科学技术的飞速发展,人类在生活居室环境方面获得了巨大的改善。空调的广泛使用给人们创造了一个以温湿度为主的舒适性环境,但同时也带来了室内空气品质问题,尤其是无新风系统的空调房间,导致了“病态建筑综合症”、“建筑相关病”和多种化学物过敏症。“病态建筑综合症”的常见症状主要有头痛、神经疲劳、皮肤干燥、鼻塞、流鼻涕、流泪、眼痒等等。“建筑相关病”是指由空气中的某种成分直接引起的病症,比较严重的有“军团病”、“超敏性肺炎”等,有时甚至能带来生命危险。

所谓室内空气品质,一般是指在某个具体的环境内,空气中的某些要素对 人群工作、生活的适宜程度,是反映了人们的具体要求而形成的一种概念。这种概念是建立在“以人为本”的基础上的。显然,人们不仅要求适宜的室内温湿度,而且人们还要求室内空气是新鲜的,无污染的,从而引发了对室内空气品质的广泛研究。

室内空气基本污染物与污染源如下:

表一 室内主要污染物及其来源

污 染 物

污 染 源

悬浮微粒

燃烧、抽烟、人体

烟草烟雾

人的吸烟行为

石棉

保温材料

氡及其蜕变物

墙体和地基

甲醛

建筑材料、家具

挥发性有机物(VOCs)

油漆、清洁剂、建筑材料

一氧化碳

燃烧、吸烟

二氧化碳

燃烧、呼吸

微生物

家畜、人体

过敏物

动物、毛发、昆虫、花粉

臭氧

现代电子办公用品

室内空气有害物的种类繁多,但一般都是以低浓度的形式存在,有时还远远低于人的嗅觉阈值,但这并不意味着人体无害,恰恰相反,人一生中有五分之四的时间在室内度过,长期受低浓度污染物的直接毒害,其后果还是相当严重的。

为了清除室内空气中的有害物质,通风是一种非常有效的办法,但是它也有缺点:在室外大气污染日趋严重的今天,燃料的燃烧、工业生产及机动车辆排放的废气使得室外空气的质量也很差,而且室外空气与室内空气的交换会带来巨大的能耗。局部通风有时也因为污染源较分散或根本就不知道气态污染物从何而来而无法实现。目前通用的过滤器只是过滤灰尘,还不具备清除有害气体和细菌的功能。成功分离低浓度的气态污染物质和细菌对改善室内陆空气品质至为重要。活性炭吸附材料对室内气态污染物具有优秀的吸附性能,使活性炭过滤器逐渐应用于民用建筑空调系统中。在通风量不变的条件下,它能使室内空气得到更全面的净化。

2 活性炭的发展历史及分类

使用活性炭作为一种吸附材料已具有悠久的历史。早在古埃及时代,人类就会利用木炭来消除伤口散发的气味;1773年,谢勒首次科学地证明了木炭对气体具有吸附力;1808年,木炭被用到蔗糖业;第一次世界大战期间,为了消除化学武器的威胁,活性炭防毒面具问世,这是活性炭第一次应用于空气净化领域;上个世纪六十年代,具有独特化学结构、物理结构且吸附性能优异的新型纤维状活性炭材料研制成功。目前对吸附材料的研究集中于非均匀吸附剂的加工工艺、微观特征、能量不均匀性及吸附性能等。

活性炭种类很多,因其原料、用途、性能、形状不同,彼此间差别很大,分类的方法也很多。按外部形状分类,可分为粉状活性炭、颗粒活性炭、纤维活性炭。纤维活性炭是在碳纤维的基础上研制和开发的新产品,在日本主要以有机化合物为原料,纤维活性炭的细度仅为头发的1/3左右。我国已有用石油沥青作原料研制出优质纤维状活性炭的报道。从原料分类,可分为煤炭原料、植物原料、石油原料、塑料等。按用途分类,可分为气相吸附、液相吸附、工业催化活性炭。空气净化主要用气相吸附,要求微孔发达。

3 活性炭的结构和性质

表二 活性炭孔隙分类

孔型

联合会规定的孔隙直径(nm)

微孔

<2.0

中孔

2.0~50

大孔

>50

在活性炭的吸附过程中,这三种孔隙各有其特殊功能。对吸附来说,微孔是最重要的,它的比表面积可达几百甚至上千㎡/g,孔容也比较大。微孔在很大程度上决定着活性炭的吸附能力。

活性炭的吸附特性不仅取决于它的孔隙结构,而且取决于它的化学组成。由于基本微晶在活化时,一部分被烧掉,受到不完整石墨层的干扰改变了碳骨架电子云的排列,出现了不完全饱和价或成对电子直接影响着活性炭的吸附特性。另一影响活性炭吸附特性的是结构中的杂原子。活性炭中的杂原子有两种来源:一种是以化学结合的元素形成的,如氧和氢,这些元素一般来源于原材料,在炭化时不能完全分解遗留下来的,有的则是活化时,和活化剂进行化学反应结合在表面上的。另一种是灰分,这些灰分主要来源于活性炭的原材料,也有少数是生产过程带入的。灰分使活性炭的微晶结构产生缺陷,氧被化学吸着于这些缺陷上,从而提高了活性炭对极性分子的吸附作用。灰分的存在对气体吸附(如二氧化硫、水蒸气、醋酸等)也有直接影响。

在活性炭中加入某些无机化合物(如ALCL

3、NaOH、CuO等)可使活性炭改性,吸附性能发生了某些明显的变化。对某些物质的吸附也可产生奇特的效果。

氧和氢的存在对活性炭的吸附性能影响较大,它们以化学键与碳原子结合,是活性炭结构的有机部分。它们是优良活性炭的重要组分。按照固体表面多相理论,氧、氢和其他杂原子结合在微晶的边缘和角上的碳原子上,因为这种碳原子不完全饱和,反应性较高。

在所有结合的元素中,氧比其他元素更引起人们的重视。因为氧对活性炭基本微晶的排列及大小有重大影响。这种表面结合的氧对水蒸气和其他极性或可极化气体的吸附能力有重大影响。

C—O表面化合物是多样的。例如:C—O表面络合物、表面氧化物、表面氧化化合物和化学吸着氧。这些化合物分成两类:一类是在温度低于100℃时,气态氧和活性炭表面发生反应生成氧的络合物,经水合作用生成羟基和其他碱性基,这些碱性基可以起到离子交换作用;当加热到1000℃时,则生成气态氧化物,从活性炭表面脱除。另一类是在300~500℃下,氧与活性炭接触生成酸性氧化物,经水合作用可生成酸性表面化合物,也有离子交换能力。由表面氧结合的官能团主要有:羟基、羧基、酚基、内脂、醌。但只有一部分氧结合在这些官能团中,其余的则是以醚性链同碳表面结合。

在活性炭中,还结合有N、CL等其他元素,这些原子的结合对活性炭的吸附性能也有着明显的影响。

综上所述:在活性炭中,由于微晶间的强烈交联形成了发达的微孔结构,通过活化反应使微孔扩大形成了许多大小不同的孔隙,其表面一部分被烧掉,结构出现不完整,加上灰分及杂原子的存在,使活性炭的基本结构产生缺陷和不饱和价,使氧及其他杂原子吸着于这些缺陷上,因而使活性炭产生各种各样的吸附特性。

全文阅读已结束,如果需要下载本文请点击

下载此文档

相关推荐 更多