当前位置: 查字典论文网 >> 实用电子秤

实用电子秤

格式:DOC 上传日期:2022-11-16 02:54:44
实用电子秤
时间:2022-11-16 02:54:44     小编:

本系统采用单片机 AT89S52 为控制核心,实现电子秤的基本控制功能。系统的硬件部分包括最小系统板,数据采集、人机交互界面三大部分。最小系统部分主要是扩展了外部数据存储器,数据采集部分由压力传感器、信号的前级处理和 A/D 转换部分组成。人机界面部分为键盘输入 , 128 64 点阵式液晶显示,可以直观的显示中文,使用方便。

软件部分应用单片机 C 语言实现了本设计的全部控制功能,包括基本的称重功能,和发挥部分的显示购物清单的功能,可以设置日期和重新设定 10 种商品的单价,具有超重报警功能,由于系统资源丰富,还可以方便的扩展其应用

第一部分: 方案论证与比较

一、控制器部分

二、数据采集部分

( 1 )、传感器

题目要求称重范围 9.999Kg ,重量误差不大于 Kg ,考虑到秤台自重、振动和冲击分量,还要避免超重损坏传感器,所以传感器量程必须大于额定称重— 。我们选择的是 L-PSIII 型传感器,量程 20Kg ,精度为 ,满量程时误差 0.002Kg 。可以满足本系统的精度要求。其原理如下图所示:

称重传感器主要由弹性体、电阻应变片电缆线等组成,内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,输出信号电压可由下式给出:

( 2 )、前级放大器部分

压力传感器输出的电压信号为毫伏级,所以对运算放大器要求很高。 我们考虑可以采用以下几种方案可以采用:

方案 一 、利用普通低温漂运算放大器构成多级放大器。

普通低温漂运算放大器构成多级放大器会引入大量噪声。由于 A/D 转换器需要很高的精度,所以几毫伏的干扰信号就会直接影响最后的测量精度。所以,此中方案不宜采用。

方案

二、由高精度低漂移运算放大器构成差动放大器。

差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放 ( 如 OP0

7) 做成一个差动放大器。 优点:输入级加入射随放大器,增大了输入阻抗,中间级为差动放大电路,滑动变阻器 R6 可以调节输出零点,最后一级可以用于微调放大倍数,使输出满足满量程要求。输出级为反向放大器,所以输出电阻不是很大,比较符合应用要求。

缺点:此电路要求 R3 、 R4 相等,误差将会影响输出精度,难度较大。实际测量,每一级运放都会引入较大噪声。对精度影响较大。 此类芯片内部采用差动输入,共模抑制比高,差模输入阻抗大,增益高,精度也非常好,且外部接口简单。

以 INA126为例,接口如下图所示:

放大器增益 ,通过改变 的大小来改变放大器的增益。

基于以上分析,我们决定采用制作方便而且精度很好的专用仪表放大器 INA126 。

( 3 )、 A/D 转换器

由上面对传感器量程和精度的分析可知: A/D 转换器误差应在 以下 14 位 A/D 精度: 10Kg/16384=0.61g

考虑到其他部分所带来的干扰 ,12 位 A/D 无法满足系统精度要求。 所以我们需要选择 14位或者精度更高的A/D。

方案

一、逐次逼近型 A/D转换器,如:ADS780

5、ADS7804等。

逐次逼近型 A/D转换,一般具有采样/保持功能。采样频率高, 功耗比较低,是理想的高速、高精度、省电型 A/D 转换器件。

高精度逐次逼近型 A/D转换器一般都带有内部基准源和内部时钟,基于89C52构成的系统设计时仅需要外接几个电阻、电容。

但考虑到所转换的信号为一慢变信号,逐次逼近型 A/D转换器的快速的优点不能很好的发挥,且根据系统的要求,14位AD足以满足精度要求,太高的精度就反而浪费了系统资源。所以此方案并不是理想的选择。

方案

二、双积分型 A/D转换器:如:ICL71

3

5、ICL7109等。

双积分型 A/D转换器精度高,但速度较慢(如:ICL71

3

5),具有精确的差分输入,输入阻抗高(大于 ),可自动调零,超量程信号,全部输出于TTL电平兼容。

双积分型 A/D转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50HZ的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。故而采用双积分型A/D转换器可大大降低对滤波电路的要求。

作为电子秤,系统对 AD的转换速度要求并不高,精度上14位的AD足以满足要求。另外双积分型A/D转换器较强的抗干扰能力,和精确的差分输入,低廉的价格。综合的分析其优点和缺点,我们最终选择了ICL7135。

三、人机交互界面

( 1 )、键盘输入

键盘输入是人机交互界面中最重要的组成部分,它是系统接受用户指令的直接途径。 我们采用了专用的键盘显示芯片 ZLG 7289。

Intel8279 是一种比较成熟的可编程键盘 / 显示芯片,可以满足小系统的要求。

ZLG7289 是周立功单片机公司设计的串行输入输出可编程键盘 / 显示芯片有强大的键盘显示功能,支持 64 键控制。可以比较方便的扩展系统。另外 ZLG7289 内部有译码电路,大大简化了程序。

我们选择功能更好的 ZLG7289 作为键盘扫描显示芯片

( 2 )、显示输出

虽然 ZLG7289 具有控制数码管显示的功能,但考虑到本题目要求中文显示,数码管无法满足,只能考虑用带有中文字库的液晶显示器。由于可以分页显示,无需太大屏幕,我们选择了点阵式 128 × 64 型 LCD — OCM4X8C 。

第二部分:具体实现方案

一、硬件组成:

(一)、硬件结构框图如下:

( 二)、各部分硬件电路实现 主控电路以 89C52为核心扩展32K RAM;单片机使用6M晶振,P0口外接上拉电阻,增大了带负载能力;A12~A15接74LS138译码器,输出作外部片选信号。 扩展了几个接口用于其它部分于单片机的通信

( 2)前端信号处理

INA126构成的放大器及滤波电路: 由于 ICL7135对高频干扰不敏感,所以滤波电路主要针对工频及其低次谐波引入的干扰。因为压力信号变化十分缓慢,所以滤波电路可以把频率做得很低。

( 3)A/D转换器

基于 ICL7135的A/D转换器实现电路: 由于 ICL7135内部没有振荡器,所以需要外接。但A/D转换器精度与时钟频率的漂移无关。正向积分时间T1和反向积分时间T2按相同比例增加并不影响测量的结果。ICL7135的时钟频率典型值为200kHz最高允许为1200kHz,时钟频率越高,转换速度越快。每输出一位BCD码的时间为200个时钟周期,选通脉冲位于数据脉冲的中部,如果时钟频率太高,则数据的接受程序还没有接受完毕,数据就已经消失了。考虑到此系统频率要求不是太高,且单片机的工作频率也不是很高,因此我们取时钟频率的典型值:200kHz。由于频率比较低,对时钟漂移要求不高,我们采用阻容方式实现了基本的振荡电路。如下:

振荡频率约为 160kHz。

此外 ICL7135外部还需要外接积分电阻、积分电容,但A/D转换器精度与外接的积分电阻、积分电容的精度无关,故可以降低对元件质量的要求。不过积分电容和积分电容的介质损耗会影响到A/D转换器的精度,所以应采用介质损耗较小的聚丙乙烯电容

ICL7135还需要外接基准电源,这是因为芯片内部的基准源一般容易受到温度的影响,而基准电源的变化会直接影响转换精度。所以当精度要求较高时,应采用外接基准源。一般接其典型值1V。

(4) 、人机交互界面

(a) 、键盘接口图:

键盘控制芯片 ZLG7289 控制键盘的扫描,当监测到有键按下后 ZLG7289 的 9 脚便产生一个低电平通知单片机,单片机可以采用查询或者中断方式将数据通过 P1.5 以串行方式读入。因为查询方式会浪费大量的时间 , 所以本系统采用的是中断方式。

(b) 、 LCD 显示接口电路

.

LCD 复位信号通过反相器接到单片机的 RESET 上,上电或手动复位时将随单片机同时复位。由于复位后并行口输出高电平, LCD 处于选中状态,此时 LCD 将输出内部状态字,将会影响数据总线上的数据传输。所以外接

全文阅读已结束,如果需要下载本文请点击

下载此文档

相关推荐 更多