当前位置: 查字典论文网 >> 公路隧道上跨供水隧洞爆破振动监测技术浅析

公路隧道上跨供水隧洞爆破振动监测技术浅析

格式:DOC 上传日期:2022-10-22 02:03:12
公路隧道上跨供水隧洞爆破振动监测技术浅析
时间:2022-10-22 02:03:12     小编:

摘 要 介绍了新建分离式高速公路隧道上跨既有输水隧洞爆破施工过程中爆破振动监测工作实施情况及取得的成果 。针对新建隧道上跨原有隧洞的复杂情况,隧道开挖爆破的施工过程中,提前做好爆破振动测试掌握振动参数,通过分析、验算,不断优化、修正爆破方案及爆破参数,严格控制爆破振动,安全顺利的通过了下方输水隧洞,确保了既有输水隧洞工程实体安全。成功上跨既有输水隧洞的爆破振动监测技术,为以后大跨隧道上跨既有重要结构物积累了宝贵经验。

关键词 大跨径 隧道 上跨 既有隧洞 爆破振动 监测

中图分类号:U45 文献标识码: A

1 工程概况

该隧道是关键的工期控制性工程,为从莞高速公路东莞段的的重难点工程。

东深供水隧洞是由东莞东江引水输送到深圳、香港的一条输水动脉,为深圳、香港上千万居民提供生活生产用水。供水隧洞洞内内净空宽度6.4m,高度7.2m。

走马岗隧道左右线从既有东深供水隧洞上方跨越施工通过,施工过程中必须严格控制爆破振动波速,以免对下方既有输水隧洞工程实体造成损害。

2 走马岗隧道与东深供水隧洞位置关系

据《爆破安全规程》和广东省水利厅对走马岗隧道与东深供水走马岗隧洞交叉段会议纪要的规定,走马岗隧道施工期允许的安全振动速度为≤7cm/s。

本文将以走马岗隧道左线施工为例进行介绍阐述。

走马岗隧道与东深供水隧洞平面位置关系

走马岗隧道与东深供水隧洞交叉段空间位置关系

3 走马岗隧道、东江供水隧洞交叉段地质情况

根据地勘单位提供的地质资料:左线交叉处围岩为中-微风化混合花岗岩,岩质坚硬,强度较高,裂隙较发育,岩体较完整,稳定性较好,含裂隙水,施工开挖无支护时易掉块,围岩长时间暴露可能产生小规模坍塌,易渗流水,围岩为Ⅲ级。右线交叉处围岩为中-微风化混合花岗岩,岩质坚硬,强度较高,受构造影响严重,裂隙发育,岩体较破碎,稳定性较差,含裂隙水,施工开挖易掉块坍塌,易渗流水,围岩为Ⅳ级。

4 控制爆破施工方案

为确保输水隧洞工程实体安全,走马岗爆破在上跨东深供水隧洞施工过程中,爆破过程全程进行爆破振速监测。当爆破振速超过规范及安全要求时,及时调整爆破参数及施工方案。

4.1 爆破振动监测方案

4.1.1 监测仪器

图4.1.1 TC-4850爆破测振仪工作示意图

完整的爆破测振过程如图4.1.3所示,可分为三个部分,分别是测试参数、现场测试、数据回放。

图4.1.3 爆破测振测试过程

根据现场施工情况,上台阶爆破总装药量在230-260kg,分8-9段爆破,最大掏槽药量为30-34.8kg,单段起爆药量较大。下台阶分左右侧分别爆破,一次起爆总药量20-24kg,分3-4段爆破,单段起爆药量较小,振动较小。因此,此次实验重点对左右线上台阶爆破开挖进行监测。

图4.1.3 测点布置方案

传感器固定时,首先用电钻在衬砌上打膨胀螺丝孔,采用石膏粉加水调制成浆糊状作为粘结剂将传感器粘在测点表面,用不锈钢夹片加膨胀螺丝固定,保证其可随衬砌同时振动。在安装过程中,垂直方向Z应该尽量保持与水平面垂直,水平X方向与隧道轴线平行,水平Y向垂直隧道壁,传感器固定及与监测仪的连接如图4.1.4-图4.1.5所示。

图4.1.4 传感器的固定

图4.1.5 监测仪器连接及保护

5 监测成果与建议

(4)根据掏槽眼段萨道夫斯基公式回归结果和振动速度控制标准(小于7cm/s),计算出采用当前进尺和药量进行爆破施工时,与交叉处的安全距离,Ⅲ级围岩为33.9m,Ⅳ级围岩为29.4m;在此范围内,需采用验证过的优化爆破方案进行施工。

(5)根据最大段装药量对爆破方案进行了优化设计,下一阶段将进行优化爆破方案的现场验证,施工单位需要严格按照爆破方案进行装药爆破;对振动速度进行监测,若出现振速超限情况,需对爆破方案进一步优化,使振动速度控制在《爆破安全规程》规定的范围内,保证交叉段爆破施工时东深供水隧洞的安全。

5 结束语

通过走马岗隧道成功实施爆破监测从而有效指导控制爆破,安全、顺利上跨东深供水输水隧洞的建设实例,总结出:在无法避免先后建设的新旧隧道平面交叉情况下,采用控制爆破施工技术,并严格进行爆破监测指导爆破施工、合理调整爆破参数从而控制爆破振速在规定范围内,可以有效保证原有已建成隧洞的实体安全,为类似工程施工提供参考。

全文阅读已结束,如果需要下载本文请点击

下载此文档

相关推荐 更多