作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
初中数学试讲教案篇一
教学内容:
苏教版国标本五年级上册《认识负数》第一课时
教学目标:
1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。
2、体验生活与数学的联系,会用正负数的知识解释生活现象。
教学过程:
一、创设情境,激趣引入
(多媒体出示沈阳大雪时的一幅照片)
师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)
(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)
二、借助经验,自主探究
1、 认识温度计
小结:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。
师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)
2、教学例1。
(1)教学正、负数读写法
谈话:同学们,咱们中国幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一起来看一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)
师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)
师:沈阳和海口的气温一样吗?为什么?
你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流评价。)
师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。
讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度; +20℃读作正二十摄氏度。+20℃也可以简单记作20℃。
(2)练一练。
(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)
师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示
(板书):-9℃、27℃]
3、教学例2。
(1)出示例2。
师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)
(2)教师讲解“海拔”的含义。
(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)
(4)练一练。
(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?
黑海海拔高度是-28米。
马里亚纳海沟最深处的海拔是-11034米。
(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)
三、抽象概括,沟通联系。
1、揭示概念。
师:像-20、-9、-155这样的数都是负数。你还能说出几个负数吗?能说得完吗?
像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?
揭示课题(板书)。
2、介绍负数产生的历史。
(多媒体出示教科书第九页“你知道吗?”)
3、认识0与正、负数的关系。
师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)
0与负数比、0与正数比,大小有什么关系?(指名回答)
四、巩固练习,应用拓展。
1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)
2、你知道这些温度吗?读一读。(教科书练习一第五题)
3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)
(让学生在练习纸上完成后,比一比这几个城市温度的高低。)
4、下面是小明的一则日记。
2007年7月18日 晴
今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。
我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8、9℃吧。
回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!
……
这则日记中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?
五、全课总结。
师:这节课我们一起认识了负数。你有哪些收获,给大家分享,好吗?
六、拓展延伸。
让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。
总评:
课程标准提出:人人学有价值的数学,人人都能获得必需的数学。本节课体现了如下特点:
简约。紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。
贴切。数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,精心设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。
课始,老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。
充实。数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知——探索——建构——应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。
和谐。关注学生学习过程评价。老师注意给学生提供广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、 “你能说说是怎样看出来的吗?”、“ 你能用自己喜欢的方式表示吗?”、“你有哪些收获,给大家分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅 。
初中数学试讲教案篇二
1.生活中的数,比“0”大的数叫做()数,比“0”小的数叫做()数。
2.如果用—3表示电梯下降3层,那么+5表示().
3.河道中的水位比正常水位低2m记作—2m,那么比正常水位高1m记作()。
4请你用正负数记录小明家的收支情况。
8月4日爸爸工资收入1500元记作:()
8月6日水、电、煤气支出200元记作:()
8月12日电话费支出120元记作:()
8月15日妈妈工资收入1400元记作:()
5.工厂生产一批零件,要求零件的直径是40mm,现检验员检验其中的10件,检验结果如下:(单位:mm)(5分)39.74040.139.94040.339.840.240.139.9如果以40mm为标准,超过部分为正,不足的部分为负,则这10件零件的检验结果可分别记作::()
初中数学试讲教案篇三
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)
5.列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
(2)在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1.第91页练习(1)(2)
3.小明步行由a地去b地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求a、b两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1.学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3.用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
初中数学试讲教案篇四
4月27日,我到新昌参加“沃洲之春”教学观摩活动,上虞阳光学校的叶柱老师上了一堂精彩的课〈认识负数〉,现将课堂实录整理如下:
一、温度中的“负数”
师:老师搜集了我国三个城市某天的最低气温资料,大家想看看吗?(课件)
杭州的最低温度是多少?
生:3摄氏度 生:39摄氏度
师:到底是多少?问题出在观察的方式上。(师介绍温度计两边的刻度摄氏度和华氏)
师:我们常用的是摄氏度。
师:我们来到了六朝古都南京最低气温是多少?生:0摄氏度
师:北京最低气温是多少?生:零下3摄氏度 。
师:你是怎么看的? 生:我发现它是在0以下,再数下3格就是零下3摄氏度。
师:北京与杭州的最低气温一样吗?为什么?
生:杭州气温是零上3摄氏度,北京是零下3摄氏度。
( 板书杭州 南京 北京的气温 )
师:你知道数学上是怎样区别零上3摄氏度与零下3摄氏度的吗?
(教学认读正3摄氏度 负3摄氏度 )
师:你能用这样的数表示其他城市的气温吗?请你用自己的神态与姿势告诉我已经准备好了
(课件展示某城市温度计 学生举学具卡片表示)
哈尔滨 -14摄氏度 漠河 -30摄氏度
海口 30 摄氏度
这时老师发现有两个同学的答案不同说:“可给我逮到了!”
师:+30摄氏度与30摄氏度哪个对?
生:这两个都对的。
师:把学具卡片放好,它只是我们的工具。
师:现在我们来做气象纪录员,看谁有快又准确。
(略)
二、海拔中的“负数”
师:不同地区气温有差别,同一地区一天中的气温也有差别,想了解吗?
(课件欣赏吐鲁番盆地的奇特自然现象)
师:吐鲁番气温变化是什么原因?是海拔。
(课件出示海拔高度示意图)
师:从图中你知道了什么?
生:珠穆朗玛峰海拔8844.43米, 吐鲁番盆地海拔低于海平面155米。
师:你能用今天所学的数表示出珠穆朗玛峰与吐鲁番盆地的海拔高度吗?
(同桌商量着互相说。)
师:你还有什么问题?
(师补充说明8844.43是最新的测量高度。)
(练习:用正负数表示各地的海拔高度。)
马耳代夫平均海拔比 海平面高1米
师:平均海拔比海平面高1米是什么意思?
师:海拔高于海平面10米有可能吗?
(练习:根据海拔高度判断各地高于海平面,还是低于海平面。)
欧洲是世界上海拔最低的洲,平均海拔高度300米。
马里亚那海沟 最深处海拔-11032米
师:你读了这句有什么感觉?
生:很高 。生:很深。
三、数学中的“负数”
师:我们把它们的单位去掉,观察这些数你能给它们分分类吗?
生:分两类,有减号的与没减号的。
生:分3类,有减号的,有加号的,40是另一类。
师:你认为把它分在哪里合适?
师:像+3、40这样的数是“正数”;像-3、-400这样的数是“负数”。
( 出示一条数轴,在中间添上0)
师:如果这里是0,你能想到什么?
生:0的右边是负数,左边是正数。
生:0的左边是负数,0的右边是正数。
师:数学上规定0左侧的为负数,右侧的为正数。
( 生读数轴上的数)
师:读得完吗?红红的0该向哪边走呢?
师:0应该是分界线,0既不是正数也不是负数,所有的正数大于0所有的负数小于0。
师:我们回顾一下,学到了什么?
(揭示课题:认识负数 欣赏延伸《负数的历史》)
四、生活中的“负数”
师:生活中,你还在哪里见到过负数?
(工资单、电梯控制面板、)
(解决问题1、连一连 2、说一说 3、填一 填 4、想一想)
(课件出示有关刘翔比赛的资料:刘翔速度14.42秒 赛场风速为-0.4米)
师:你有疑问吗?
(师生表演来解释风速-0.4米)
初中数学试讲教案篇五
27.3 过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程。
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心。
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程。
难点:知道过不在同一条直线上的三个点画圆的方法。
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点a画圆,并考虑这样的圆有多少个?
2.过已知两个点a、b画圆,并考虑这样的圆有多少个?
3.过已知三个点a、b、c画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑。
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个。
不在同一直线上的三个点确定一个圆。
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。
例:画已知三角形的外接圆。
让学生探索课本第15页习题1。
一起探究
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题。另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解。
(二)、小结
七、练习设计
p15习题2、3
八、教学后记
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 。
2. 如图,有a, ,c三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
a.在ac,bc两边高线的交点处
b.在ac,bc两边中线的交点处
c.在ac,bc两边垂直平分线的交点处
d.在a,b两内角平分线的交点处
初中数学试讲教案篇六
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1、经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2、通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1、 3x+1=4
2、 x-2=3
3、 2x+0.5x=-10
4、 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1、找出问题中的已知数和已知条件。(独立回答)
2、设未知数:设这个班有x名学生。
3、列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4、找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)
5、列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
(2)在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1、第91页练习(1)(2)
3、小明步行由a地去b地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求a、b两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1、学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3、用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
初中数学试讲教案篇七
4月27日,我到新昌参加“沃洲之春”教学观摩活动,上虞阳光学校的叶柱老师上了一堂精彩的课〈认识负数〉,现将课堂实录整理如下:
一、温度中的“负数”
师:老师搜集了我国三个城市某天的最低气温资料,大家想看看吗?(课件)
杭州的最低温度是多少?
生:3摄氏度生:39摄氏度
师:到底是多少?问题出在观察的方式上。(师介绍温度计两边的刻度摄氏度和华氏)
师:我们常用的是摄氏度。
师:我们来到了六朝古都南京最低气温是多少?生:0摄氏度
师:北京最低气温是多少?生:零下3摄氏度。
师:你是怎么看的?生:我发现它是在0以下,再数下3格就是零下3摄氏度。
师:北京与杭州的最低气温一样吗?为什么?
生:杭州气温是零上3摄氏度,北京是零下3摄氏度。
(板书杭州南京北京的气温)
师:你知道数学上是怎样区别零上3摄氏度与零下3摄氏度的吗?
(教学认读正3摄氏度负3摄氏度)
师:你能用这样的数表示其他城市的气温吗?请你用自己的神态与姿势告诉我已经准备好了
(课件展示某城市温度计学生举学具卡片表示)
哈尔滨-14摄氏度漠河-30摄氏度
海口30摄氏度
这时老师发现有两个同学的答案不同说:“可给我逮到了!”
师:+30摄氏度与30摄氏度哪个对?
生:这两个都对的。
师:把学具卡片放好,它只是我们的工具。
师:现在我们来做气象纪录员,看谁有快又准确。
(略)
二、海拔中的“负数”
师:不同地区气温有差别,同一地区一天中的气温也有差别,想了解吗?
(课件欣赏吐鲁番盆地的奇特自然现象)
师:吐鲁番气温变化是什么原因?是海拔。
(课件出示海拔高度示意图)
师:从图中你知道了什么?
生:珠穆朗玛峰海拔8844.43米,吐鲁番盆地海拔低于海平面155米。
师:你能用今天所学的数表示出珠穆朗玛峰与吐鲁番盆地的海拔高度吗?
(同桌商量着互相说。)
师:你还有什么问题?
(师补充说明8844.43是最新的测量高度。)
(练习:用正负数表示各地的海拔高度。)
马耳代夫平均海拔比海平面高1米
师:平均海拔比海平面高1米是什么意思?
师:海拔高于海平面10米有可能吗?
(练习:根据海拔高度判断各地高于海平面,还是低于海平面。)
欧洲是世界上海拔最低的洲,平均海拔高度300米。
马里亚那海沟最深处海拔-11032米
师:你读了这句有什么感觉?
生:很高。生:很深。
三、数学中的“负数”
师板书+3摄氏度-3摄氏度-155米8844.43米40摄氏度-26摄氏度
师:我们把它们的单位去掉,观察这些数你能给它们分分类吗?
生:分两类,有减号的与没减号的。
生:分3类,有减号的,有加号的,40是另一类。
师:你认为把它分在哪里合适?
师:像+3、40这样的数是“正数”;像-3、-400这样的数是“负数”。
(出示一条数轴,在中间添上0)
师:如果这里是0,你能想到什么?
生:0的右边是负数,左边是正数。
生:0的左边是负数,0的右边是正数。
师:数学上规定0左侧的为负数,右侧的为正数。
(生读数轴上的数)
师:读得完吗?红红的0该向哪边走呢?
师:0应该是分界线,0既不是正数也不是负数,所有的正数大于0所有的负数小于0。
师:我们回顾一下,学到了什么?
(揭示课题:认识负数欣赏延伸《负数的历史》)
四、生活中的“负数”
师:生活中,你还在哪里见到过负数?
(工资单、电梯控制面板、)
(解决问题1、连一连2、说一说3、填一填4、想一想)
(课件出示有关刘翔比赛的资料:刘翔速度14.42秒赛场风速为-0.4米)
师:你有疑问吗?
(师生表演来解释风速-0.4米)
初中数学试讲教案篇八
使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”
正方形的定义.
双边合作 如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:
(1)对角线相等的菱形是正方形吗?为什么?
(2)对角线互相垂直的矩形是正方形吗?为什么?
(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
(4)能说“四条边都相等的四边形是正方形”吗?为什么?
(5)说“四个角相等的四边形是正方形”,对吗?
让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.
问:所得的图形是矩形吗?它与一般的矩形有什么不同?
所得的图形是菱形吗?它与一般的菱形有什么不同?
所得的图形在小学里学习时称它为什么图形?它有什么特点?
由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(一)新课
请同学们推断出正方形具有哪些性质?
(1)正方形的四个角都是直角。
(2)正方形的四条边相等。
(1)正方形的两条对角线相等。
(2)正方形的两条对角线互相垂直平分。
(3)正方形的每条对角线平分一组对角。
初中数学试讲教案篇九
各位老师,大家好!今天我说课的题目是人教版七年级(上)第二章第二节《整式的加减》第1课时。
首先,我对本节教材进行一些分析:
一、教材分析:
上启下的课。
二、教学目标:
1、知识目标:
(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:
并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、情感目标:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
三、教学重点、难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
四、教学方法与教学手段:
(1)教法分析:
基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。(2)学法分析:
应用意识和发散思维。
五、教学过程:
初中数学试讲教案篇十
1、使学生正确理解的意义,掌握的三要素;
2、使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;
3、使学生初步理解数形结合的思想方法。
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数。
难点:正确理解有理数与上点的对应关系。
课堂教学过程设计
一、从学生原有认知结构提出问题
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——。
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。
通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可。
三、运用举例 变式练习
例1 画一个,并在上画出表示下列各数的点:
例2 指出上a,b,c,d,e各点分别表示什么数。
课堂练习
示出来。
2、说出下面上a,b,c,d,o,m各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。
四、小结
指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究。
五、作业
1、在下面上:
(1)分别指出表示-2,3,-4,0,1各数的点。
(2)a,h,d,e,o各点分别表示什么数?
2、在下面上,a,b,c,d各点分别表示什么数?
3、下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};