范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
商的近似值教学反思篇一
数学来源于生活,本节课从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识。收到了良好的教学效果。教学在解决实际问题时,遇到不适宜用“四舍五入”法取商的近似值,就要用“去尾”法和“进一”法来解决。
在教学中,我始终抓住两点:一个是取近似值的方法,另一个是区分在什么情况下选择相应的方法。
我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。
首先出示例12(1):小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶里最多可盛0.4千克,需要准备几个瓶子?”并以谈话的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。再要求学生根据提出的信息列式计算,得到商为两位小数时。我在巡视中发现,有的学生把商是两位小数的6.25,就放在哪就不管了。这时教师问:“实际计算瓶子的个数时,有6.25个吗?应该保留到什么数呢?除的时候应该怎么办?(生:应该保留整数。)老师又问:6个瓶子够吗?听后,同学们都明白了保留整数的道理,使学生学会了根据实际生活需要用进一法法求商的近似数。
接着例12(2)学习了用去尾法,解决实际问题。本课时根据实际情况求近似数是教学难点,所以安排了大量相关知识的练习,所用的时间比较多多。另外,将学生的水平估计得太高,出示的题目相对比较难,导致学生在计算时遇到了一定的困难,浪费了一些探索新知识的时间。
在本课的教学中,我还加大了对比的力度,让学生在对比中发现三种方法的区别和联系。在教学中,我觉得学生对三种取近似值的方法在理解上没有太大的困难,主要的问题出现在区别什么情况下用“去尾”法,什么情况下用“进一”法。关于这一点我觉得主要还是与学生的生活经验有关联。我主要通过举一反三的办法。
新教材为我们提供了广阔的思维空间,我们要结合课改,挖掘教材,合理、科学的利用教材,全面贯彻课改精神,实现学生在学习活动上的“知识与技能、过程与方法、情感态度与价值观”三维目标而努力教学,这样才无愧于学生,才能称得上是一名新课改下的老师。
商的近似值教学反思篇二
当前的基础教育课程改革应将"以知识为中心的"的课程和"以儿童为中心"的课程整合成"以情景为中心"的课程,与之相应的课堂教学设计也需要重新确立新的理念。
本节课的设计理念主要体现的是"以情景为中心"的课程思想。我力把"以学生为本"的理念体现在整个课堂教学的过程中。更多地侧重于促进学习者的发展,更多的关注学习者学习能力,习惯和态度地形成,关注学习者的主动求知与实践参与,关注学习者的价值观念于情感态度在学习活动中的作用。因此,我在制定这节课的目标时,除了培养学生进行初步的观察、分析、综合、抽象、概括的能力,使学生感受数学与现实生活的密切联系,培养学生的探索意识,还包括培养学生高层次的数学思考能力、创新精神和解决实际问题的能力。
建构主义理论认为,学习不是知识由教师向学生的传递,而是学生主动建构自己知识的过程。学生并不是空着脑袋走进教室的,在日常生活中,在以往的学习中,他们已经积累了丰富的经验,他们都有自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在他们面前,他们往往可以基于相关的经验,依靠他们的认知能力,形成对问题的解释。所以,教学不能无视学生的原有经验,他们在学习新知之前,已有了一定的生活经验和实践积累。以此为依据,我在导入新课时,以实际情景导入情境的创设,根据学生原有认知水平,进行教学,这使学生感到与他们原有知识经验的不协调,从而产生学习的认知需要,引起学生的求知欲。
在教师的引导下,自己解决问题,除不尽时要取近似值;同样,再教学时,再让学生尝试计算,学生再一次发现问题,虽然得数能除尽,但根据实际生产、生活的需要,并不需要很多小数位数,这时也要取近似值。 “求商的近似值与积的近似值有什么相同点和不同点?”这些环节时,我通过让学生先独立思考,再小组讨论,使学生学会合作、学会表达、学会交流。
整节课基本上体现了"以学生为本"的理念,体现了"以情景为中心"的课程思想。但是,在具体教学过程中有些细节方面不是把握得很好。
1、生活语言运用得不够贴切。
2、时间把握不够。本着“以学生发展”的理念,我设计了一系列联系学生实际的练习题,但是一节课下来,有几道练习题来不及讲完。究其原因,除了本节课的计算量比较大,导致时间不够,还有一个原因,就是应该学会调整课堂的结构,如有些题目只要学生学会判断商是否要取近似值,以及取几位小数,这样可能课堂的效率可能会更高。
商的近似值教学反思篇三
通过本节课的教学,有如下感想:
教师有意制造“添0继续除还是除不尽”的矛盾冲突,把学生推到自主探究的前台。教师适时引导学生求一个多位数的近似数,使学生获得解决问题的钥匙。学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。
除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的人力资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。特别是生1的不同看法,不迷信于书本,在交流中与全班同学分享,变成了全班同学的共同财富。
充分利用课堂这一阵地,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。
商的近似值教学反思篇四
本节课的知识是在学习了小数除法的基础上教学的。在小数除法中经常出现除不尽,或者商的小数位数较多的情况,但是在实际生活和工作中,并不总是需要求出很多位小数的商,这就需要求商的近似数了。
成功之处:
1.创设情境,突出取近似值的意义。在例6的教学中,主要解决这样两个问题:一是体会求商的近似数的必要性;二是掌握取商的近似值的方法。学生通过计算每个羽毛球大约多少钱,计算的结果是1.616元,可以让学生体会到计算到这里计算的是钱数,实际生活中不需要三位小数,最多可以保留两位小数,表示精确到分,而在超市付钱时可以保留一位小数,表示精确到角。由此可以使学生想到:解决问题时,即使能除尽,有时也需要根据实际情况取近似值,如价钱、人数、个数等。
2.联系旧知,横向比较。在学习商的近似值时联系积的近似值,找出它们的相同点,都是把比保留的小数位数多一位的数进行四舍五入。
不足之处:
学生在计算中还是存在计算速度慢,计算不准确的现象,特别是商中间有0的除法计算出错率特别高。
再教设计:
在教学小数除法时还是需要复习试商的方法,特别是特殊的数。如同头无除商8或9,余数是除数的一半商5等。在学习商的近似值时,也可以根据学生的学习程度,适当介绍简便方法,也就是除到要保留的小数位数后,不用再继续除,只要把余数同除数比较,若余数比除数的一半小,就说明求出下一位的商小于5,直接舍去;若余数等于或大于除数的一半,就说明求出下一位的商等于或大于5,就在已经求得的商的末位上加1。
商的近似值教学反思篇五
本节课的知识是在学习了小数除法的基础上教学的。在小数除法中经常出现除不尽,或者商的小数位数较多的情况,但是在实际生活和工作中,并不总是需要求出很多位小数的.商,这就需要求商的近似数了。
成功之处:
1.创设情境,突出取近似值的意义。在例6的教学中,主要解决这样两个问题:一是体会求商的近似数的必要性;二是掌握取商的近似值的方法。学生通过计算每个羽毛球大约多少钱,计算的结果是1.616元,可以让学生体会到计算到这里计算的是钱数,实际生活中不需要三位小数,最多可以保留两位小数,表示精确到分,而在超市付钱时可以保留一位小数,表示精确到角。由此可以使学生想到:解决问题时,即使能除尽,有时也需要根据实际情况取近似值,如价钱、人数、个数等。
2.联系旧知,横向比较。在学习商的近似值时联系积的近似值,找出它们的相同点,都是把比保留的小数位数多一位的数进行四舍五入。
不足之处:
学生在计算中还是存在计算速度慢,计算不准确的现象,特别是商中间有0的除法计算出错率特别高。
再教设计:
在教学小数除法时还是需要复习试商的方法,特别是特殊的数。如同头无除商8或9,余数是除数的一半商5等。在学习商的近似值时,也可以根据学生的学习程度,适当介绍简便方法,也就是除到要保留的小数位数后,不用再继续除,只要把余数同除数比较,若余数比除数的一半小,就说明求出下一位的商小于5,直接舍去;若余数等于或大于除数的一半,就说明求出下一位的商等于或大于5,就在已经求得的商的末位上加1。
商的近似值教学反思篇六
教学本例,教师只提出了两个问题:(1)你怎样才能知道自己走一步的长度呢?(2)你解答这道题时有什么想法?在这两个问题的引导下,出示例题、解决问题都顺势而出,在极其自然的情形下学生就完成了新知的学习,效果还比较好。我这样设计,有以下思考:
学生从数学中学到的知识有时会不知道在什么情况下使用,因此学到的知识就变成了僵化的知识。为了避免知识僵化,有必要使学生在大脑里储存知识时,将所学知识与该知识应用的“触发”条件结合起来,形成条件化知识。在学习知识的同时,掌握这些知识在什么条件下使用。上面教学片断中教师提出的第一个问题,就利用学生的生活经验和数学经验,把数学知识在生活中的实际应用情境化,在学生掌握解题思路和方法的同时,了解了这一知识在课堂之外的背景中的应用条件。这也让数学问题的出示自然而不露痕迹。
英国著名数学家斯根普在其名著《数学学习心理学》中指出:“逻辑推理所展现的只不过是数学产品,而不能告诉学习者这些结果是如何一步步被揭开、发展出来的。它只教数学技巧,而不是教数学思考。”由此可见,要教会学生思考数学问题,一定要引导学习者经历结果是如何得到的过程。在这个过程中,靠教师灌输,学生只会被动接受,只有给学生自主学习的时空、教会学生自主学习的方法,才能使学生学会主动创造。上例中的第二问,就为学生提供了自主学习时空,让他们在经历计算、取值、思考、回答的过程中再次深入思考,学生的汇报展示了知识形成的整个过程。教学中,教师没有讲,完全由学生“再创造”出这些知识。
数学真正的组成部分是问题和解,其中问题是数学的心脏。要通过“解决问题”而使学生获得知识、方法、思想上的全面发展,使孩子变得越来越聪明,首先要有一个“好”问题,因为学生数学素质是通过这些“问题”上以及“解决”过程之中发展起来的。
现代“问题解决”研究的先驱g.波利亚主张:“与其穷于应付繁琐的教学内容和过量的题目,还不如选择一个有意义但又不太复杂的题目,去帮助学生深入发掘题目的各个侧面,使学生通过这道题目,就如同通过一道大门进入一个崭新的天地”。
上例中的两个问题不符合“问题解决”中问题的要求。之所以写下这一段,在于我感觉到,设计并提出一两个“好”问题确能优化教学过程,优化学生的数学思考,比之“满堂问”,学习的效果会好许多。希望在以后的教学中有“好问题”产生,把握数学的心脏就把握住了数学课堂的核心。
改造数学“问题”,促进学习方式的有效改变——以“问”促学,会有更多的体验与收获。
商的近似值教学反思篇七
教学目标
1.理解求近似值的实际意义,掌握求的方法.
2.培养学生应用数学知识解决实际问题的能力.
教学重点
会根据实际需要求小数乘法中.
教学难点
会根据实际需要求小数乘法中.
教学过程
一、复习旧知
(一)口算
0.21×0.43×0.62.5×40.17-0.08
0.2×0.31.2×0.050.43×200.5÷10
(二)按要求取下面各小数的近似值.
0.384(保留一位小数)2.859(保留两位小数)
3.4(保留整数)7.996(保留两位小数)
二、导入新课
(学生试做)
教师:填的对不对呢?学完今天的知识,看谁能帮助营业员阿姨填一份标准的发票?
三、指导探索
(一)出示例5
1.请同学根据题意列式解答(指名板演)
2.讨论:为什么结果保留两位小数?保留两位小数应看哪一位数字?
3.教师介绍“四舍五入法”
4.计算下面各题
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
副标题#e#
四、课堂总结
五、巩固练习
(一)一种面粉的价格是每千克1.92元,买14千克应付多少元?
(二)一种面粉的价格是每千克1.92元,买1.4千克应付多少元?
(三)出示图片:发票,由学生完成.
六、课后作业
(得数保留整数.)
七、板书设计
――――“四舍五入法”
教学设计点评
这节课从学生的生活实际引入,通过帮助营业员阿姨开发票,使学生真正体会到生活中处处存在着数学,学好数学能解决大量实际问题,从而提高了学生的学习兴趣。
关于的探究活动
1.班内开展一次“用自己零花钱,募捐希望工程”的活动,把每人捐款情况记录在黑板上(钱数用小数表示),请同学帮助算出总钱数(得数保留整数)
提示:如果有捐款数目相同的,可以用乘法表示并计算。
2.在家长的陪同下,带着计算器完成一次为家里买菜的任务(去自由市场),计算出所共费的总钱数。
商的近似值教学反思篇八
教学本例,教师只提出了两个问题:(1)你怎样才能知道自己走一步的长度呢?(2)你解答这道题时有什么想法?在这两个问题的引导下,出示例题、解决问题都顺势而出,在极其自然的情形下学生就完成了新知的学习,效果还比较好。我这样设计,有以下思考:
学生从数学中学到的知识有时会不知道在什么情况下使用,因此学到的知识就变成了僵化的知识。为了避免知识僵化,有必要使学生在大脑里储存知识时,将所学知识与该知识应用的“触发”条件结合起来,形成条件化知识。在学习知识的同时,掌握这些知识在什么条件下使用。上面教学片断中教师提出的第一个问题,就利用学生的生活经验和数学经验,把数学知识在生活中的实际应用情境化,在学生掌握解题思路和方法的同时,了解了这一知识在课堂之外的背景中的应用条件。这也让数学问题的出示自然而不露痕迹。
英国著名数学家斯根普在其名著《数学学习心理学》中指出:“逻辑推理所展现的'只不过是数学产品,而不能告诉学习者这些结果是如何一步步被揭开、发展出来的。它只教数学技巧,而不是教数学思考。”由此可见,要教会学生思考数学问题,一定要引导学习者经历结果是如何得到的过程。在这个过程中,靠教师灌输,学生只会被动接受,只有给学生自主学习的时空、教会学生自主学习的方法,才能使学生学会主动创造。上例中的第二问,就为学生提供了自主学习时空,让他们在经历计算、取值、思考、回答的过程中再次深入思考,学生的汇报展示了知识形成的整个过程。教学中,教师没有讲,完全由学生“再创造”出这些知识。
数学真正的组成部分是问题和解,其中问题是数学的心脏。要通过“解决问题”而使学生获得知识、方法、思想上的全面发展,使孩子变得越来越聪明,首先要有一个“好”问题,因为学生数学素质是通过这些“问题”上以及“解决”过程之中发展起来的。
现代“问题解决”研究的先驱g.波利亚主张:“与其穷于应付繁琐的教学内容和过量的题目,还不如选择一个有意义但又不太复杂的题目,去帮助学生深入发掘题目的各个侧面,使学生通过这道题目,就如同通过一道大门进入一个崭新的天地”。
上例中的两个问题不符合“问题解决”中问题的要求。之所以写下这一段,在于我感觉到,设计并提出一两个“好”问题确能优化教学过程,优化学生的数学思考,比之“满堂问”,学习的效果会好许多。希望在以后的教学中有“好问题”产生,把握数学的心脏就把握住了数学课堂的核心。
改造数学“问题”,促进学习方式的有效改变——以“问”促学,会有更多的体验与收获。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档