作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么我们该如何写一篇较为完美的教案呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
六年级数学教案及反思篇一
1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
理解成数和折扣的含义;理解成数与分数、百分数的含义。
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。
板书:百分数应用题
2、成数的含义。
师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。
(1)口答
“三成”是十分之(),改写成百分数是()。
“三成五”是十分之(),改写成百分数是()。
(2)七成二成五五成相当于百分之多少?
3、售价加两成是什么意思?求售价应先算出什么?
还可以怎样算?学生交流解题思路。
4.出示例2。
(1)学生读题,理解题中的数学信息。
(2)减产一成五是什么意思?
(3)学生独立解答,指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书设计:
37.4×(1-15%)
=37.4×0.85 =31.79(吨)
答:今年产棉花31.79万千克。
六年级数学教案及反思篇二
1、在下图中描点,表示第20页两个表格中的数量关系。
2、思考:连接各点,你发现了什么?
生:所有的点在都在同一条直线上。
(设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。)
六年级数学教案及反思篇三
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
?设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
六年级数学教案及反思篇四
图1:柱子是圆的还是方的?仔细看一看。
让学生先同桌互相说一说,看到了什么?
图2:看着黑点身体前后移动。
让学生跟着要求做,然后说一说看到的。
图3:有多少个黑点?
图4:是静的还是动的?
图5:“弗雷泽螺旋”是最有影响的幻觉图形。
教师介绍学生认识。
2、练习。
六年级数学教案及反思篇五
1.教材第53页第4题。
把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。
(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。
(3)某企业去年实际产值与计划产值的比是275万:250万。
2.教材第53页第6题。
(二)拓展练习(ppt课件出示)
学生口答完成。
1.2:3这个比中,前项增加12,要使比值不变,后项应该增加()。
2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()
?设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。
六年级数学教案及反思篇六
教学内容:课本第65页内容和练习十六的第4-7题。
教学目的:
1.使学生学会“和倍”、“差倍”问题变形的应用题的解题思路和方法,提高学生用方程解答应用题的能力。
教学重点:分析题中出现的两种数量关系
教学难点:会用x表示两种数量并列出方程。
教学过程:
一、准备。
1.口答:(用含有x的式子表示)
果园里有苹果树x棵,梨树的棵数是苹果树的,
(1)梨树有多少棵?(x)
(2)苹果树和梨树一共有多少棵?(x+x)
(3)苹果树比梨树多多少棵?(x-x)
二、新课。
(一)学习例3.
问:“白兔的.只数是黑兔的5倍”还可以怎样说?
(1)说说它与复习2有什么异同?
(2)根据题意,画出线段图。
(3)“黑兔的只数是白兔的”你怎样理解?
(4)把题目中所存在的数量关系找出来。
(5)应该怎样解答,请你完成。
(6)订正:说说的解题思路是怎样的。
(7)想一想,怎样检验做得对不对?
(二)变式练习。
将例3的第一个条件变为“白兔比黑兔多16只”。
(1)题目中的数量关系发生了什么变化?
(2)应该如何解答?讨论、交流。
三.巩固练习。
(1)课本第65页“做一做”题目。
四、课堂总结:
1.今天我们学习了什么样的应用题?
2.这样的应用题解思路和方法是怎样的?
五、堂上练习:
六、作业。
练习十六第4、5、6题
六年级数学教案及反思篇七
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1.充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的.面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2.要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点:圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
六年级数学教案及反思篇八
教学目标:
1.知识与技能:借助学生的生活经验,理解百分数的意义,知道百分数与分数之间的联系与区别,会正确读、写百分数,会解释日常生活中常见的百分数。
2.过程与方法:通过搜集学习材料并进行一系列的讨论和研究。
3.情感态度与价值观:提高学生的收集信息、分析比较的能力,激发学生学习数学的兴趣和应用数学的意识。
4.知识要点:理解百分数的意义:表示一个数是另一个数的百分之几的数。。通常不写成分数形式。
教学重点:
理解百分数的意义,熟练地读、写百分数。
教学难点:
正确理解百分数和分数的联系与区别。
学法指导:
引探教学法教具
学具课件:
通案个案
教学过程:
一、联系生活导入新课。
交流收集到的百分数。请同学们把收集到的百分数展示给大家。
(1)羊毛衫羊毛的含量是90%。
(2)上衣__纶的含量是23%。
(3)白酒中酒精的含量是52%。……
大家收集到百分数真不少,看来百分数在生活中应用很广泛,今天我们就来研究百分数。
二、合作探究学习新知
1、让学生交流已经知道百分数的哪些知识。
生:会读百分数、会写百分数……
2、教师示范“%”和百分数的写法。(写百分号时,两个圆圈要写得小一些,以免和数字混淆)。
3、让学生写出几个喜欢的百分数,并读出来。
4、小组交流认识百分数的意义。
(1)教师提问:什么叫百分数呢?生答。
(表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。)
(2)教师解释:百分数是一种特殊的倍比关系,它的后项是一种固定的数100,所以也叫百分率或百分比。
(3)讨论:百分数的分子可以是哪些数呢?
学生分组讨论,教师巡视指导。各组把讨论的结果在全班交流,教师小结。
5、讨论百分数和分数的联系及区别:联系是:都可以表示一个数是另一个数的几分之几,即都可以表示两个数的倍数关系。区别是:分数既可以表示两个数的倍数关系,又可以表示一个数,表示数时可以带单位名称。而百分数只表示两个数的倍数关系,它的后面不能写单位名称。
6、练习:下面的这些分数哪个能写成百分数。
(1)六一班的同学中男同学的人数占48/100。
(2)一个苹果重27/100千克。
(3)一堆煤重87/100吨,运走它的32/100
三、巩固应用熟练掌握
(1)完成p78“做一做”(2)在规定时间内写出10个满意的百分数,结束后让学生说出实际写的个数是规定的百分之几。
四、课堂小结体验收获
五、课堂检测
(一)必做题
1、25%的计数单位是(),它有()个这样的单位。
2、分母是100的分数叫做百分数。()
3、一杯牛奶重25%千克。()
4、百分数的意义与分数的意义完全相同。()
(二)选做题
选择合适的百分数填空。2%15%120%100%0.0001%
1、今天上课,积极举手的同学占全班人数的()
2、只要同学们认真学习,这个单元的及格率一定会达到()
3、大海捞针的可能性是()