总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中可以改进提高,趋利避害,避免失误。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?以下我给大家整理了一些优质的总结范文,希望对大家能够有所帮助。
高三物理知识点总结图篇一
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=q,则我们称p为q的充分条件,q是p的必要条件。这里由p=q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=q”等价的逆否命题是“非q=非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
(3)定义与充要条件。
数学中,只有a是b的充要条件时,才用a去定义b,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;。
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高三物理知识点总结图篇二
定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。
产生原因:物体具有竖直向上的加速度。
2.失重现象。
定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。
产生原因:物体具有竖直向下的加速度。
3.完全失重现象。
定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。
产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。
高三物理知识点总结图篇三
定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。
产生原因:物体具有竖直向上的加速度。
2、失重现象。
定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。
产生原因:物体具有竖直向下的加速度。
3、完全失重现象。
定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。
产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。
【超重和失重就是物体的重量增加和减小吗?】。
答:不是。
只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。
注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度v方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。
另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。
高三物理知识点总结图篇四
(1)粒子散射实验结果:绝大多数粒子沿原方向前进,少数粒子发生较大偏转。
(2)原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转.
2、玻尔理论有三个要点:
(1)原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态.
(3)原子的不同能量状态对应于电子沿不同圆形轨道运动.原子的定态是不连续的,因而电子的可能轨道是分立的.
在玻尔模型中,原子的可能状态是不连续的,各状态对应的能量也是不连续的,这些不连续的能量值的能量值叫做能级。
3、原子核的组成核力。
原子核是由质子和中子组成的.质子和中子统称为核子.
4、原子核的衰变。
(1)天然放射现象:有些元素自发地放射出看不见的射线,这种现。
象叫天然放射现象.
(2)放射性元素放射的射线有三种:、射线、射线,
这三种射线可以用磁场和电场加以区别,
(3)放射性元素的衰变:放射性元素放射出粒子或粒子后,衰变成新的原子核,原子核的这种变化称为衰变.
衰变规律:衰变中的电荷数和质量数都是守恒的.
(4)半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期.不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的.它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关.
(5)同位素:具有相同质子数,中子数不同的原子在元素周期表中处于同一位置,互称同位素。
高三物理知识点总结图篇五
1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。
a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态。
b.力是该变物体速度的原因。
c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)。
d力是产生加速度的原因。
2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。
a.一切物体都有惯性。
b.惯性的大小由物体的质量决定。
c.惯性是描述物体运动状态改变难易的物理量。
3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。
a.数学表达式:a=f合/m。
b.加速度随力的产生而产生、变化而变化、消失而消失。
c.当物体所受力的方向和运动方向一致时,物体加速。当物体所受力的方向和运动方向相反时,物体减速。
d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1n。
4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的。
a.作用力和反作用力同时产生、同时变化、同时消失。
b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。
高三物理知识点总结图篇六
极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。
(2)极性分子与非极性分子之间。
非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。
(3)非极性分子之间。
非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?
我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。
从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。
高三物理知识点总结图篇七
参加高考,绝对是目标最明确的一次行动,并不是像人生以后的发展,存在好多未知。高考的你首先需要了解考试要求,明确考试目标和具体考试要求,这样有目标的学习对复习有更好的导向功能、调控功能、评价功能和反馈功能。而物理考题的基本命题趋势是:重基础、查全面、验方法、考能力。
重基础,就是指复习重点仍是考纲中所要求的基本概念、规律、理论和技能。正所谓:万变不离其宗。高考中的大多数试题都可以从课本上的例题、习题、总复习题中找到它们的“影子”。因此,高考复习不要总把眼睛盯在课外题上,要花力气吃透课本上那些有特色、概念性强、构思新疑和方法灵活的习题。
查全面,就是指考题覆盖面宽,力学、电学、热、光、核与实验等等都会全面被考察到,甚至是近代物理一般知识的考查也都涵括在内。因此,总复习时要系统地把握住物理课本内容的整体知识结构。
而所谓“验方法”,是指物理高考中要求考生熟练掌握解答物理问题的基本思维方法,如归纳法、演绎法、实验法、分析法、综合法和基本解题思想,如实验证明的思想、化归的思想等等。
而关于考能力,是指重在考查考生运用物理知识分析问题和解决问题的能力。在总体把握考试要求的前提下,还要弄清考试内容的结构安排。
二、掌握要领,通过概念看本质。
复习物理一定要正确掌握物理概念,因为这些概念要领是对客观众事物的本质属性的反映,是思维的细胞,是学好物理的基础。如果概念不清,即使把公式、定理背得滚瓜烂熟,也不能找到解题的正确途径。比如高考中普遍丢分的问题,如静摩擦、功能关系等,很大程度上是由于相关概念没有搞清楚。
因此,对于每一个概念,必须搞清它的内涵和外延,搞清它与其他要领的联系和区别,把它纳入的概念体系中去。要站在全部教材之上,挖掘知识之间的内在联系。有些要领需通过对比的形式,明确它们之间的共性和特性,再如动量和动能,由于形似,容易混淆,复习时应对比其各自的特征,利用“相反相成”的原理揭示它们之间的本质区别。有很多物理量都有其决定式和量度式,可通过进行比较。
三、
难题不过多纠结,错题本必不可少。
有很多考生,尤其是中等偏上的考生,往往很喜欢攻克哪些比较难的题目。但是对于大部分高考复习物理的你,一定要控制难题,多做“错题”,错题本必不可少。迎考复习必须做一定数量的习题,以巩固知识,培养能力,但其难易程度与数量应有所控制,成绩优异者可适当做一些难题,一般同学应少做或不做难题,因为一道难题,往往要消耗我们许多精力和宝贵的时间。做题不在多,但应达到练一点带全面的效果。
总体来说,高考物理试题,就涉及的内容可分为重点知识、一般知识(即方方面面的知识点)、实用知识、学史常识(有关物理学历史的重要事件、人物、年代等)、量具与实验、方法与能力等几大类型。而核心是重点知识和方法能力。实用知识、学史常识和量具实验中的某些内容,一般情况下记住就行了。
对于较有代表性的知识,像力矩、传动、振动、波动、声、分子运动论、固液性质、热力学第一定律、静电平衡、伏安电表量程的扩大、自感现象、交流电、变夺器、电磁振荡、几何光学、物理光学及核物理中的大部分内容,主要是强调对其理解和应用。
高三物理知识点总结图篇八
物体所受外力和外力作用时间的乘积;矢量;过程量;i=ft;单位是n·s。
2.动量。
物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg·m/s;1kg·m/s=1n·s。
3.动量守恒定律。
一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
4.动量守恒定律成立的条件。
系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5.动量定理。
系统所受合外力的冲量等于动量的变化;i=mv-mv。
6.反冲。
在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7.碰撞。
物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8.弹性碰撞。
如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
9.非弹性碰撞。
碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
高三物理知识点总结图篇九
大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,lc电路是最简单的振荡电路。
2.电磁振荡及周期、频率。
(1)电磁振荡的产生。
(2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。
(3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到值。
给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。
(4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫电磁振荡的周期,一秒内完成电磁振荡的次数叫电磁振荡的频率。对于lc振荡电路。
(5)电磁场:变化的电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场成为一个完整的整体,就是电磁场。
高三物理知识点总结图篇十
所谓“动量守恒”,意指“动量保持恒定”。考虑到“动量改变”的原因是“合外力的冲”所致,所以“动量守恒条件”的直接表述似乎应该是“合外力的冲量为o”。但在动量守恒定律的实际表述中,其“动量守恒条件”却是“合外力为。”。究其原因,实际上可以从如下两个方面予以解释。
(1)“条件表述”应该针对过程。
(2)“条件表述”须精细到状态。
‘弹性正碰”的“定量研究”
“弹性正碰”的“碰撞结果”
质量为跳,和m:的小球分别以vl。和跳。的速度发生弹性正碰,设碰后两球的速度分别为二,和二2,则根据碰撞过程中动量守恒和弹性碰撞过程中系统始末动能相等的相应规律依次可得。
“碰撞结果”的“表述结构”
作为“碰撞结果”,碰后两个小球的速度表达式在结构上具备了如下特征,即:若把任意一个小球的碰后速度表达式中的下标作“1”与“2”之间的代换,则必将得到另一个小球的碰后速度表达式。“碰撞结构”在“表述结构”上所具备的上述特征,其缘由当追溯到“弹性正碰”所遵循的规律表达的结构特征:在碰撞过程动量守恒和碰撞始末动能相等的两个方程中,若针对下标作“1”与“2”之间的代换,则方程不变。
“动量”与“动能”的切入点。
“动量”和“动能”都是从动力学角度描述机械运动状态的参量,若在其间作细致的比对和深人的剖析,则区别是显然的:动量决定着物体克服相同阻力还能够运动多久,动能决定着物体克服相同阻力还能够运动多远;动量是以机械运动量化机械运动,动能则是以机械运动与其他运动的关系量化机械运动。
高三物理知识点总结图篇十一
其实上课的时候课本上面有很多例题,之所以把那些例题放到那一节,说明那个例题包含了本节课的所有内容和重要知识点,是专家组反复研究才确定好的题目,这就说明例题是多么的重要,我们不能小看例题哦。我们要着重去分析例题,剖析例题,抓住重点和知识点,这样你才能掌握同种类型的题目的解题方法。困难不就迎刃而解了嘛?所以重点去关注和分析例题,这是学好这门课程的关键点。
解题注意速度。
对于平时做题慢吞吞的学生而言,你要掌握好自己做题速度,因为物理题是需要花大量时间去思考的,如果你不去思考,那么就没有任何思路,不知道怎么解决问题。可能每次考试都会出现我还没做完就交卷了等等问题,所以提高你的解题速度是一个必须攻克的难题,你始终要明白,高考时间紧迫而且题量巨大,要是你平时都太慢,就必须要改变。怎么改变呢?就是在课后每次做作业的时候严格的控制自己的速度,给自己紧迫感,这样一来解题速度肯定会越来越快的。
高三物理知识点总结图篇十二
在日常生活中,我们都会有这种经验:
当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低。为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低.这种现象称为多普勒效应,它是用发现者克里斯蒂安多普勒(christiandoppler,1803-1853)的名字命名的,多普勒是奥地利物理学家和物理家.他于1842年首先发现了这种效应.为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好象波被压缩了.因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好象波被拉伸了。因此,声音听起来就显得低沉.定量分析得到f1=(u+v0)/(u-vs)f ,其中vs为波源相对于介质的速度,v0为观察者相对于介质的速度,f表示波源的固有频率,u表示波在静止介质中的传播速度。当观察者朝波源运动时,v0取正号;当观察者背离波源(即顺着波源)运动时,v0取负号。当波源朝观察者运动时vs前面取负号;前波源背离观察者运动时vs取正号。从上式易知,当观察者与声源相互靠近时,f1当观察者与声源相互远离时。
具有波动性的光也会出现这种效应,它又被称为多普勒-斐索效应。因为法国物理学家斐索(1819-1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化。如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移.
20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去.1929年哈勃根据光普红移总结出著名的哈勃定律:星系的远离速度v与距地球的距离r成正比,即v=hr,h为哈勃常数.根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小。由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物。因而1948年伽莫夫()和他的`同事们提出大爆炸宇宙模型。20世纪60年代以来,大爆炸宇宙模型逐渐被广泛接受,以致被天文学家称为宇宙的标准模型。
多普勒-斐索效应使人们对距地球任意远的天体的运动的研究成为可能,这只要分析一下接收到的光的频谱就行了。1868年,英国天文学家w。哈金斯用这种办法测量了天狼星的视向速度(即物体远离我们而去的速度),得出了46 km/s的速度值 。
高三物理知识点总结图篇十三
一、三种产生电荷的方式:
1、摩擦起电:
(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;
(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;
(3)实质:电子从一物体转移到另一物体;
2、接触起电:
(1)实质:电荷从一物体移到另一物体;
(2)两个完全相同的物体相互接触后电荷平分;
3、感应起电:把电荷移近不带电的导体,可以使导体带电;
(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;
(2)实质:使导体的电荷从一部分移到另一部分;
(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;
4、电荷的基本性质:能吸引轻小物体;
二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
三、元电荷:一个电子所带的电荷叫元电荷,用e表示。
2、一个质子所带电荷亦等于元电荷;
3、任何带电物体所带电荷都是元电荷的整数倍;
1、计算公式:f=kq1q2/r2(k=9.0×109n.m2/kg2)。
2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)。
3、库仑力不是万有引力;
五、电场:电场是使点电荷之间产生静电力的一种物质。
1、只要有电荷存在,在电荷周围就一定存在电场;
高三物理知识点总结图篇十四
定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。
产生原因:物体具有竖直向上的加速度。
2、失重现象。
定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。
产生原因:物体具有竖直向下的加速度。
3、完全失重现象。
定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。
产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。
只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。
注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度v方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。
另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。
高三物理知识点总结图篇十五
研究物理问题时,经常遇到一个物理量随时间的变化,最典型的是动能定理的表达(所有外力做的功总等于物体动能的增量)。这时就会出现两个物理量前后时刻相减问题,小伙伴们往往会随意性地将数值大的减去数值小的,而出现严重错误。
其实物理学规定,任何一个物理量(无论是标量还是矢量)的变化量、增量还是改变量都是将后来的减去前面的。(矢量满足矢量三角形法则,标量可以直接用数值相减)结果正的就是正的,负的就是负的。而不是错误地将“增量”理解增加的量。显然,减少量与损失量(如能量)就是后来的减去前面的值。
两物体运动过程中的“追遇”问题。
两物体运动过程中出现的追击类问题,在高考中很常见,但考生在这类问题则经常失分。常见的“追遇类”无非分为这样的九种组合:一个做匀速、匀加速或匀减速运动的物体去追击另一个可能也做匀速、匀加速或匀减速运动的物体。显然,两个变速运动特别是其中一个做减速运动的情形比较复杂。
虽然,“追遇”存在临界条件即距离等值的或速度等值关系,但一定要考虑到做减速运动的物体在“追遇”前停止的情形。另外解决这类问题的方法除利用数学方法外,往往通过相对运动(即以一个物体作参照物)和作“v-t”图能就得到快捷、明了地解决,从而既赢得考试时间也拓展了思维。
值得说明的是,最难的传送带问题也可列为“追遇类”。还有在处理物体在做圆周运动追击问题时,用相对运动方法。如,两处于不同轨道上的人造卫星,某一时刻相距最近,当问到何时它们第一次相距最远时,的方法就将一个高轨道的卫星认为静止,则低轨道卫星就以它们两角速度之差的那个角速度运动。第一次相距最远时间就等于低轨道卫星以两角速度之差的那个角速度做半个周运动的时间。
高三物理知识点总结图篇十六
对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。
对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。
在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。
还要说明的是在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。
2、对摩擦力认识模糊。
摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。
最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去,建议高三党们从下面四个方面好好认识摩擦力:
(1)物体所受的滑动摩擦力永远与其相对运动方向相反。这里难就难在相对运动的认识;说明一下,滑动摩擦力的大小略小于静摩擦力,但往往在计算时又等于静摩擦力。还有,计算滑动摩擦力时,那个正压力不一定等于重力。
(2)物体所受的静摩擦力永远与物体的相对运动趋势相反。显然,最难认识的就是“相对运动趋势方”的判断。可以利用假设法判断,即:假如没有摩擦,那么物体将向哪运动,这个假设下的运动方向就是相对运动趋势方向;还得说明一下,静摩擦力大小是可变的,可以通过物体平衡条件来求解。
(3)摩擦力总是成对出现的。但它们做功却不一定成对出现。其中一个的误区是,摩擦力就是阻力,摩擦力做功总是负的。无论是静摩擦力还是滑动摩擦力,都可能是动力。
(4)关于一对同时出现的摩擦力在做功问题上要特别注意以下情况:
可能两个都不做功。(静摩擦力情形)。
可能两个都做负功。(如子弹打击迎面过来的木块)。
可能小于零(滑动摩擦)。
也可能大于零(静摩擦成为动力)。
可能一个做负功一个不做功。(如,子弹打固定的木块)。
可能一个做正功一个不做功。(如传送带带动物体情形)。
(建议结合讨论“一对相互作用力的做功”情形)。
3、对弹簧中的弹力要有一个清醒的认识。
弹簧或弹性绳,由于会发生形变,就会出现其弹力随之发生有规律的变化,但要注意的是,这种形变不能发生突变(细绳或支持面的作用力可以突变),所以在利用牛顿定律求解物体瞬间加速度时要特别注意。
还有,在弹性势能与其他机械能转化时严格遵守能量守恒定律以及物体落到竖直的弹簧上时,其动态过程的分析,即有速度的情形。
高三物理知识点总结图篇十七
一、三种产生电荷的方式:
1、摩擦起电:
(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;。
(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;。
(3)实质:电子从一物体转移到另一物体;。
2、接触起电:
(1)实质:电荷从一物体移到另一物体;。
(2)两个完全相同的物体相互接触后电荷平分;。
3、感应起电:把电荷移近不带电的导体,可以使导体带电;。
(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;。
(2)实质:使导体的电荷从一部分移到另一部分;。
(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;。
4、电荷的基本性质:能吸引轻小物体;。
二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
三、元电荷:一个电子所带的电荷叫元电荷,用e表示。
2、一个质子所带电荷亦等于元电荷;。
3、任何带电物体所带电荷都是元电荷的整数倍;。
1、计算公式:f=kq1q2/r2(k=9.0×109n.m2/kg2)。
2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)。
3、库仑力不是万有引力;。