在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
六年级上册数学分数除法计算题篇一
49~50页的内容及练习十二1~12题。
1、知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
2、过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
3、情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
掌握分数与除法的关系,会用分数表示两个数相除的商。
理解可以用分数表示两个数相除的商。
课件
一、复习导入
1、表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2、把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位1?
3、引入:5除以9,商是多少?板书:59
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。
二、新课讲授
1、教学例1:出示题目
(1)列出算式。(板书:13=)
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的,就是个1。
板书:13=1/3(个)
2、教学例2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的,即3个块,把3个块饼合起来就是1个饼的,即块,因此,34=3/4(块)。
由此可见,不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样1份的数。
学生相互说说表示的意义。
3、教学分数与除法的关系。
六年级上册数学分数除法计算题篇二
1、使学生掌握分数乘加、乘减除加、除减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
3、运用分数乘除法的相关定律解决实际问题。
熟练掌握运算定律,灵活、准确地进行简便计算,运用分数乘除法解决实际问题。
运用分数乘除法的相关定律解决实际问题。
1、分数乘法的意义:
(1)分数乘整数,就是求几个相同的的运算。
(2)一个数(整数或分数)乘分数,就是求的是多少。
2、分数除法的意义:分数除法的意义与整数除法的意义,就是已知两个因数的和其中一个,求另一个的运算。
3、分数乘法的计算(分数和整数相乘、分数乘分数)。
因为整数都可以看成分母是1的分数,所以分数乘法的计算方法是用相乘的积作,用相乘的积作,能约分的要先,然后再计算。
4、分数除法的计算(分数除以整数、一个数除以分数)。
在分数除法中,除以一个不等于0的数,等于乘以这个数的。
5、运用乘法运算定律进行分数的简便运算:分数乘法中进行分数的简便运算时经常要用到的运算定律有。
6、分数四则混合运算:(1)乘除混合运算的,遇到除以一个数,就转化成这个数的
然后采用一次约分的方法计算。(2)四则混合运算的,按先后的运算顺序进行计算,有括号的,先算,再算。
7、倒数的意义和求倒数的方法:互为倒数;求一个数(0除外)的倒数,只要把这个数的分子和分母。注意:1的倒数是,0有倒数吗?
8、比的意义和基本性质:两个数又叫做两个数的比。在两个数的比中,比号前面的数叫做比的,比号后面的数叫做比的,两者相除多得的商叫做。比的前项和后项同时或相同的数,不变,这叫做比的基本性质。
9、比和分数、除法的关系。
比前项比号后项比值
除法
分数
巩固案
(一)填空题:
1、40分=()小时3/5千米=()米23×()=11.5和()互为倒数。
2、()∶8=1.2∶()=0.75=()÷6=()折=()成
3、把一根4米长的绳子平均分成5段,每段长()米,每段占全长的()。
4、把盐和水按1∶19的比例配成盐水,盐占盐水的()(填分数)
5、一根钢材长6米,若用去1/2米,还剩()米;若用去它的1/2,还剩()米。
6、甲数是乙数的1.6倍,那么甲数和乙数的比是()∶()。
7、从甲地到乙地,客车要行4小时,货车要行5小时,客车和货车的速度比是()∶()。
8、一个数的2/3是24,这个数的5/6是()。
(二)判断题:
1、1米的1/2和3米的1/2一样长。()
2、两个分数相除,商一定大于被除数。()
3、如果a÷b=4,b就是a的4倍。()
4、把10克糖放入100克水中,糖占糖水的10%。()
5、王芳看一本200页的童话书,第一天看了全书的1/5,第二天应从40页看起。()
(三)计算:
2×3/4=3/8×6=3/10×2/3=7/25×15/14=6/13÷4=5/7÷5/2=
30-1.6÷4/15=3/5×1/2+3/5÷1/2=1/5÷6/25-7/2×2/8=(0.75-3/16)÷(2/9+1/3)=
(四)列式计算:
1、8的2/7与5/7的8倍的和是多少?2、18的5/27减去3/7是多少?
3、2/3与5/12的和的6/7是多少?4、42的6/7与21的1/3的和是多少?
(五)简单应用:
1、有一个长方形的花坛,长是3/4米,宽是长的2/3,这个花坛的宽是多少米?面积是多少?
2、李叔叔录入论文,3小时录了这篇论文的1/3,照这样的速度工作8小时,可以录入这篇论文的几分之几?
3、一共有240千克水果糖,每袋装1/4千克,才装完了3/4,他们已经装完了多少袋?
六年级上册数学分数除法计算题篇三
1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。
3.培养学生分析能力、知识的迁移能力和语言表达能力。
正确的归纳出分数除以整数的计算法则,并能正确地进行计算。
(一)复习导入
投影,看乘法算式写出两道除法算式。
67=42
()()=()
()()=()
问:谁还记得整数除法的意义是什么?
板书:积一个因数另一个因数
师:这节课我们来学习分数除法的意义和计算法则。(板书课题)
首先研究分数除法的意义。(板书:意义)
(二)新授教学
1.分数除法的意义。
我们来看下面的问题。(投影出示)
(1)每人吃半块月饼,5人一共吃几块月饼?
问:谁会列式计算?
问:你是怎么想的?
(2)两块半月饼,平均分给5个人,每人分得多少月饼?
问:怎样列式计算呢?
问:没有学过分数除法,得数怎么得来的?
(3)两块半月饼,分给每人半块,可分给几个人?
问:谁会列式计算?
问:为什么这样列式,怎样算出的得数?
观察这三个算式,它们之间有什么联系?
同桌讨论,指名回答。
生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。
板书:积一个因数另一个因数
问:与整数除法对比一下,分数除法的意义是什么?
同桌互相说一说,指定2~3名学生说。
板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。
师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。
做一做:(同学们做在书上。投影订正。)
根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。
问:你根据什么写出得数的?
师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)
2.分数除以整数的计算法则。
为什么这样列式?
(2)根据题意画出线段图。
生:把1米平均分成7份,取其中的6份。
(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。
师:有道理,结果也正确,还有别的方法吗?
师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。
学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?
师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。
(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?
生:被除数不变,除号变乘号,除数变成了它的倒数。
(5)试着说一说分数除以整数的计算法则。
板书:分数除以整数()等于分数乘以这个整数的倒数。
想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)
问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。
计算法则是否会用呢?我们来自测一下。
投影做一做,学生做在书上,投影订正。
(三)巩固练习
1.计算下面各题。(投影)
2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)
(2)题为什么对?举错的说说你的想法?1的倒数是几?
(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?
(4)错在除号没有变成乘号。怎么改?
(5)错在除数没有变成倒数。怎么改?
去计算。
师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。
下面我们计算几道题,看谁能正确运用计算法则。
3.计算:
4.想一想:如果a是一个自然数,
(3)用一个数检验上面的结果是否对。
(四)课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
(五)作业
课本32页第3,4,5,6题。