当前位置: 查字典论文网 >> 解读高中数学中的抽象函数

解读高中数学中的抽象函数

格式:DOC 上传日期:2023-08-09 00:02:27
解读高中数学中的抽象函数
时间:2023-08-09 00:02:27     小编:

抽象函数问题是高中函数中的一类综合性比较强的问题,学生往往感到无从下手。解决这类问题要求学生抽象思维能力、综合运用数学知识的能力较强,但是,教师只要引导学生准确掌握所学基本初等函数的图象和性质,分清是哪一类函数的抽象,可以优化思路,使问题难度降低,从而得以解决。

下面举例说明:

形如f(x+y)=f(x)+f(y)+m(m为常数)

思路:看作 一次函数的抽象,联想一次函数的图象及性质。特例:m=0时,联想过原点的直线。

例1.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.

(1)求证:f(x)是R上的增函数;

(2)若f(4)=5,解不等式f(3m2-m-2)<3.

(1)证明:设x10,

∵x>0时,f(x)>1

∴f(x2-x1)>1,

=f(x2-x1)-1>0

又f(x)是R上的增函数,

∴f(3m2-m-2)<3 f(3m2-m-2)

∴f(x)是R上的增函数.∴f(3m2-m-2)<3

f(3m2-m-2)

3m2-m-2<2 -1

解得不等式解集为{m|-1

2.等价转化思想:运用函数的单调性,去掉函数符号,转化为解关于m的不等式。

思路:联想幂的运算性质,可看作指数函数的抽象,结合指数函数的图象和性质进行解题。

抽象函数问题,需要综合运用函数的奇偶性,单调性,周期性,对称性等性质,应用分析,逻辑推理,联想类比等数学思想方法。

常见题型有:

①求抽象函数的某一函数值:根据函数结构特征,用赋值法。

②判(证)抽象函数的单调性:类比所学具体函数,充分运用已知条件,对变量合理赋值。

③解关于抽象函数的不等式:一看定义域,一看单调性。

只要掌握相应的解题策略,问题便会化难为易,迎刃而解。

全文阅读已结束,如果需要下载本文请点击

下载此文档

相关推荐 更多

分类导航