作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么我们该如何写一篇较为完美的教案呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!
消元法解二元一次方程教案篇一
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
(一)创设情景,引入课题
1.本班共有40人,请问能确定男女各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比女生多了2人。设男生x人,女生y人.方程如何表示?x,y的值是多少?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解.
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数女生时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
消元法解二元一次方程教案篇二
2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
正确发找出问题中的两个等量关系。
一、复习。
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答。
新课:
看一看课本99页探究1。
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg。
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940。
练一练:
消元法解二元一次方程教案篇三
本节内容是在学生掌握了二元一次方程组的解法,能列二元一次方程组解较简单的应用题的基础上安排的,其中的“牛饲料问题”“种植计划问”“成本与产出问题”是具有一定综合性的问题,涉及到估算与精确计算的比较、开放地探索设计方案、根据图表信息列方程组等问题形式。由于本节需要探究的问题比较复杂,所以在教学的过程中,一方面需要设置部分台阶减小坡度、分散难点,另一方面需要用一些具体的方法引导学生学会分析和表达,还要留给学生充足的思考、交流、整理、反思的时间。在解决问题的过程中,使学生体会到方程组应用的广泛性与有效性,提高分析解决问题的能力。
根据我校农村学校学生的具体学习情况和认知特点,本节内容设计为3个教学课时,第一课时主要引导学生探索列方程组解应用题的步骤和基本思路;第二课时主要进行综合性应用问题的探索;第三课时主要进行思维拓展和巩固提高。
(一)知识与技能
1、会用二元一次方程组解决生产生活中的实际问题;
2、用方程组的数学模型刻画现实生活中的实际问题。
(二)过程与方法
1、培养学生应用方程解决实际问题的意识和应用数学的能力;
2、将解方程组的技能训练与解决实际问题融为一体,进一步提高解方程组的技能。
(三)情感态度与价值观
1、体会方程组是刻画现实世界的有效模型,培养应用数学的意识。
2、在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。
3、结合实际问题,培养学生关注生产劳动、热爱生活的意识,让学生重视数学知识与实际生活的联系。
教学重点:根据题意找出等量关系,列二元一次方程组。
教学难点:正确找出问题中的两组等量关系。
4.1第一学时
教学活动
公园一角三个学生的对话:甲:昨天,我们一家8个人去公园玩,买门票花了34元。乙:哦,那你们家去了几个大人?几个小孩呢?丙:真笨,自已不会算吗?成人票5元每人,小孩3元每人啊!
(设计说明:利用学生熟悉的公园购票设计一个简单的问题,在解决这个问题的同时,使学生熟悉列方程解应用题的一般步骤,以及解二元一次方程组常用的方法,为下一步的探究做好准备。)
解:设大人为x人,小孩为y人,依题意得
x+y=8 ①
5x+3y=34 ②
解得
x=5
y=3
答:大人5人,小孩3人。
注:对列出的不同形式的方程组及其解法作简要的比较说明,有意识的引导学生体会解决问题方法的多样性及方法选择的重要性。
(教学说明:以此活动创设一个学生感兴趣的情景,教师提出问题,学生尝试解答,两名学生板演,结合板演订正,提醒学生注意选择简单的方法解方程组,避免重列轻解现象的发生。)
问题1:怎样判断李大叔的估计是否正确?
(设计说明:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用学生在比较探究后发现用方法二较简便,思路明确之后进一步考虑具体解答问题)
判断李大叔的估计是否正确的方法有两种:
1、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。
2、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确。
(教学说明:教师提出问题,让学生讨论交流,在此过程中可以逐步理解题意,找到解决问题的方法)
问题2 思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?
(设计说明:利用思考中的问题,引导学生分析题目中的数量关系,逐步将学生的思维引向问题的核心,从而顺利解决问题。)
分析:本题的等量关系是
(1)30只母牛和15只小牛一天需用饲料为675kg
(2)(30+12)只母牛和(15+5)只小牛一天需用饲料为940kg
(教学说明:教师先让学生自己阅读思考,然后同学之间互相交流,最后师生共同得出结论)
问题3 如何解这个应用题?
(设计说明:在学生正确理解题意,把握题中数量关系的基础上写出解答过程,一方面可以进一步梳理思路,熟悉解答过程,另一方面把想和做统一起来,在做的过程中发展计算、表达等多种能力。)
解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程组,得
30x+15y=675 ①
(30+12)x+(15+5)y=940 ②
化简得
2x+y=45
2.1x+y=47
解这个方程组得
x=20
y=5
答:每只母牛和每只小牛1天各需用饲料为20kg和5kg,因此,饲养员李大叔对大牛的食量估计较准确,对小牛的食量估计偏高。
(教学说明:学生在写解答过程时,教师重点关注学习有困难的学生,同时平时做事不认真规范的同学也是重点关注对象。完成之后针对出线的问题及时点评,使学生形成良好的学习习惯。)
问题3 总结:列方程组解应用题的一般步骤及需要注意的问题。
(设计说明:问题解决之后及时回顾反思,能更清晰的发现存在的问题及需要改进的地方,便于学生自查、自悟,找到适合自己的学习方法)
审:弄清题目中的数量关系;
设:设出两个未知数;
列:分析题意,找出两个等量关系,根据等量关系列出方程组;
解:解出方程组,求出未知数的值;
验:检验求得的值是否正确和符合实际情形;
答:写出答案(有时要分别作答)。
(设计说明:通过不同形式的情境设置,从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,形成初步技能。针对学习后进的学生降低了解方程组的难度,有利于这部分学生把主要精力用于学习列方程组的方法步骤上。)
那2米和1米的各应多少段?
解:设2米的有x段,1米的有y段,根据题意,得
x+y=10 ①
2x+y=18 ②
解得
x=8
y=2
答:小明估计不准确,2米长的8段,1米长的2段。
(说明:通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。要求学生自主解决,以此检验学生掌握情况和本堂课的教学效果,为第二课时教学奠定基础。)
1、本节课你学习了什么?(利用列二元一次方程组解决实际问题。)
2、列二元一次方程组解决实际问题的主要步骤是什么?(审、设、列、解、验、答。)
3、列二元一次方程组解决实际问题应注意哪些问题?
(1)认真审题,用数学语言或式子表示题目中的数量关系。
(2)解出方程组时要选择适当的方法,运算速度要快,准确度要高。
(3)要按要求写出答案。
课外作业:p101复习巩固第1题、第2题、第3题。
在这节课之前的学习中,学生已经了解了一些用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。因此,这一节课共安排了四个贴近实际问题的情境活动:活动一:逛公园,提起学生兴趣导入实际问题,数量关系较为简单;活动一:参观农场,帮助李大叔计算验证,数量关系的难度有所提高,活动中总结列二元一次方程组解决实际问题的主要步骤,同时含有关注农业生产的思想;活动三:工厂锻炼——知识应用和活动四:大显身手——拓展提高。主要通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。
这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。
在此教学过程中,要熟练掌握多媒体课件的使用流程,充分发挥图片资料创设情境和提高学生学习兴趣的作用。
消元法解二元一次方程教案篇四
本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
(1)复习引入。
设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知。
此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。
(3)例题讲解。
让学生尝试解答。
设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。
预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:
(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)。
(2)选择哪个方程变形比较简便呢?
再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。
1、这节课你学到了哪些知识和方法?
2、你还有什么问题或想法需要和大家交流分享?
消元法解二元一次方程教案篇五
(北师大版新课标实验教材八年级上册)。
一、教学目标。
1、知识与技能。
2、过程与方法。
运用代入消元法解二元一次方程;了解解二元一次方程时的“消元”思想,初步体会“化未知为已知”的化归思想。
3、情感、态度、价值观。
在学生了解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。感受学习数学的乐趣,提高学习数学的热情;培养学生合作交流,自主探究的好习惯。
二、教学重、难点。
1、教学重点。
2、教学难点。
“消元”的思想;“化未知为已知”的化归思想。
三、教学设计。
1、复习,引入新课。
上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。下面请同学们回忆一下它们分别是怎样定义的?(同学们说,说不完的教师利用ppt进行展示)。
2、新课讲解。
(1)来看我们课本上的例子:
上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。
现在要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?(学生讨论,教师巡视指导)。
通过同学们的讨论我们已经有了解题思想。首先,由方程(1)将x视为已知数解出y=x-2,由于方程组中相同的字母表示同一未知数,所以可以用x-2代替方程(2)中的y,即将y=x-2代入方程(2)。这样就可以把方程化为我们所熟悉的一元一次方程,进而求解这个一元一次方程得到y的值,带回方程组求出x的'值,方程组的解就求出来了。
好!下面我们一起来解这个方程组(学生说,教师板书)。
(1)?x?y?1?(2)?x?1?2(y?1)。
解:由(1),得y=x-2(3)。
x+1=2[(x-2)-1]。
解得,x=7。
把x=代入方程(3)得y=5。
x7所以,方程组的解为:
y5。
因此,就求出了老牛驮了7个包裹,小马驮了5个包裹。
来看我们的解题过程,首先将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行形求解。这种求解二元一次方程组的方法称为代入消元法。
解题基本思路:消元,化未知为已知。(边说边板书)。
(2)下面再来看一个例子:
(1)?2x?3y?16..........?..(2)?x?4y?13......
解:由(2),得x=13-4y(4)。
将(3)代入(1),得2(13-4y)+3y=16。
26-8y+3y=16。
-5y=-10。
y=2。
将y=2代入(3),得x=5。
x5所以原方程的解为y2。
3、课堂练习。
下面请同学们自己解下列方程组:
(1)?1)1)?x?y?11....(?3x?2y?9....((2)?(2)?x?y?7......?x?2y?3......(2)。
解答(略)。
(让两位同学上黑板做,教师巡视、指导。做完后评讲,给出解题过程)。
4、小结复习。
这节课主要学习了用代入消元法解二元一次方程组,其本思想是消元,将未知转化为已知。主要步骤为将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行求解。
5、布置作业。
课本习题7.2的1、2题。
四、板书设计。
五、教学反思。
进行教学实践后在进行总结、反思、改进。
消元法解二元一次方程教案篇六
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;。
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:1.解方程组。
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.
(1)求二元一次方程组的.解可以转化为求两条直线的交点的横纵坐标;。
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
第三环节典型例题(10分钟,学生独立解决)。
探究方程与函数的相互转化。
内容:例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是.
第四环节反馈练习(10分钟,学生解决全班交流)。
内容:1.已知一次函数与的图像的交点为,则.
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为().
(a)4(b)5(c)6(d)7。
3.求两条直线与和轴所围成的三角形面积.
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;。
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;。
(2)两条直线的交点坐标是对应的方程组的解;。
(1)代入消元法;。
(2)加减消元法;。
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
第六环节作业布置。
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
附:板书设计。
六、教学反思。
消元法解二元一次方程教案篇七
“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想。加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现。因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。
教学后发现,大部分学生能够通过加减消元法解二元一次方程组,教学一开始给出了一个二元一次方程组,先让学生用代入法求解,既复习了旧知识,又引出了新课题,引发学生探究的兴趣。通过学生的观察、发现,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性。之后,通过两个例题来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤。接下来,通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力。有个别同学在运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的。
将本文的word文档下载到电脑,方便收藏和打印。
消元法解二元一次方程教案篇八
含有两个未知数,并且所含未知数的项的次数都是1的.整式方程叫做二元一次方程。
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
(1)代入(消元)法(2)加减(消元)法。
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
初中数学平行线知识点。
平行线及其判定。
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质。
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
1要重视计算。
做数学题就是要注重计算,很多孩子成绩丢分在计算上,解题步骤没有错,但是计算的过程中出现失误,导致丢分,影响整体成绩,所以要重视计算的作用,初一阶段刚开学就会学到有理数,绝对值,倒数,相反数,一元一次方程,单项式和多项式等基本的计算问题,每一个知识点都脱离不了计算的考察。整式,方程,不等式等后续重要知识点都基于有理数的计算。后续的分式计算更凸显了孩子的计算问题。所以要想提高数学成绩,一定要重视计算。
2细节决定成败。
我们在考试以后会发现有很多不应该做错的题,因为大意失了分数,所以要想提高数学成绩,一定要注意细节,在考试的过程中不该丢的不能丢,分分计较,做到颗粒归仓。解题时即使思路正确,不注意细节也能丢分。考试分分比较,每一分都代表了一个人的素质和水平。这就是细节决定成败。
3善于发现数学规律。
要想提高数学成绩,在做数学题的过程中要善于发现规律。不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,就比如语文一样的话,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个,不过你可以用其他的方法进行解答,所以善于发现数学的解题规律,转变思路也是提高数学成绩的一条有效途径。
4高水平复习很重要。
要想提高数学成绩,在考试前一定要有高水平高效率的复习。一道题,刚开始你不熟悉,那么,你需要做十遍甚至更多遍,把整个题目做到滚瓜烂熟。这个时候,如果你还在不断地重复做这道题,那么就是低水平重复,高手们会当这道题熟悉了,他就开始放弃了,把大把时间拿来,去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。他们也在重复,但是,是高水平重复。
消元法解二元一次方程教案篇九
本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
(1)复习引入。
设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知。
此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的`解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。
(3)例题讲解。
让学生尝试解答。
设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。
预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:
(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)。
(2)选择哪个方程变形比较简便呢?
再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。
1、这节课你学到了哪些知识和方法?
2、你还有什么问题或想法需要和大家交流分享?
xxx。
通过洋葱视频辅助教学,使得学生容易体会到“消元”思想的渗透,学生能够学会规范解题。通过视频的讲解能够准确的选择要变形的方程,如果是传统的教学方式可能会出现很多学生不理解的地方,但通过洋葱数学短小精辟的视频讲解一下子让学生理解透!
消元法解二元一次方程教案篇十
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
(2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
教材第14页练习1,2。
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
教材第17页习题6,8,10,11。
消元法解二元一次方程教案篇十一
1、发现的问题:在学习《二元一次方程组》时,学生对本节课的内容和前面学习的一元一次方程有点类似,学生学习起来感到枯燥无味。课堂气愤涣散,效率不高。
2、解决问题的过程:在学习二元一次方程组时,可以用中国古代著名数学问题“鸡兔同笼”或“百鸡百钱”问题作为引入。学生被这种有趣的问题吸引,积极思考问题的答案,以“趣”引思,使学生处于兴奋状态和积极思维状态,不但能诱发学生主动学习,而且还能增长知识,了解了我国古代的`数学发展,培养学生的爱国主义精神。
3、教学反思:一堂成功的数学课,往往给人以自然、和谐、舒服的享受,在数学教学中,我们要紧密联系学生的生活实际,在现实世界中寻找数学题材,让教学贴近生活,让学生在生活中看到数学,摸到数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。让学生接触与生活有关的数学问题,势必会激发学生的学习兴趣,从而有效的提高课堂教学效率,使学生真正喜欢数学、学好数学、用好数学。
消元法解二元一次方程教案篇十二
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的.能力。
3.体会数学的应用价值。
1.找实际问题中的相等关系。
2.彻底理解题意。
探究:1.你能画线段表示本题的数量关系吗?
2.填空:(用含s、v的代数式表示)。
设小琴速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米2017年-2017学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
1.建立方程模型。
2.p38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
本节课你有何收获?
消元法解二元一次方程教案篇十三
1、会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2、知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3、引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点。
2、彻底理解题意。
教学难点。
教学过程。
一、情境引入。
二、建立模型。
1、怎样设未知数?
2、找本题等量关系?从哪句话中找到的?
3、列方程组。
4、解方程组。
5、检验写答案。
三、练习。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2、p38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
p42习题2.3a组第1题。
后记:
文档为doc格式。